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Recap

Last video, we introduced cardinality as a concept.
Then, we looked at the cardinality of the evens,
extended PHP and ended by looking at the cardinality
of the integers.

We’ll be exploring two interesting sets and their
cardinality. Namely, N × N and Q.



A Useful Conclusion

Prove that if A ⊆ B, then |A| ≤ |B|.

Proof. Since A ⊆ B, we can find an injective function from A
to B via the map f (x) = x . Clearly, every element in A
is in B so this is well defined.

Since f exists, we could never have that |A| > |B|.
Thus, we must have that |A| ≤ |B|.



Set Operations

Before we investigate N × N, let’s look at our set
operations and see what cardinality results make sense.

First, union. What can we say about |A ∪ B| when we
know |A| and |B|?



Union

First, union. What can we say about |A ∪ B| when we
know |A| and |B|?

By definition, A ∪ B = {x : x ∈ A ∨ x ∈ B}. Thus,
A ⊆ A ∪ B ⇒ |A| ≤ |A ∪ B|. Remember, even if we
have subsets with no equality, we can still share equality.

Likewise, |B| ≤ |A ∪ B| so |B| ≤ |A ∪ B|.

You can think of finite sets. But we’ll do an infinite
example. Let E be all natural even numbers and O be
all natural odd numbers. Then, |E | = |O| = |N|.



Intersections

Regarding intersections, our conclusions are reversed.
Why? A ∩ B ⊆ A and A ∩ B ⊆ B. Thus, |A ∩ B| ≤ |A|
and |A ∩ B| ≤ |B|.

Think of some examples! Remember, since both
conclusions must be true, if one set has countable
cardinality while the other is finite, then the intersection
must have finite cardinality.



Difference and Complement

Difference follows similarly to the case for Intersection.

Regarding Complement, it becomes tougher. It depends
on our universal set U and the set A.

Clearly, |AC | ≤ |U| since AC ⊆ U is always true (every
set is a subset of the universal set). But it’s hard to
figure anything else out.



Cartesian Product

In finite sets, we have that |A × B| = |A| · |B|. Think
about why.

But with countable sets, how do we multiply countable
cardinality?

The set of particular interest is: N × N. What is
|N × N|?



A Visual

The following grid describes N × N really well.

(1,1) (2,1) (3,1) (4,1) (5,1) (6,1) · · ·
(1,2) (2,2) (3,2) (4,2) (5,2) (6,2) · · ·
(1,3) (2,3) (3,3) (4,3) (5,3) (6,3) · · ·
(1,4) (2,4) (3,4) (4,4) (5,4) (6,4) · · ·
(1,5) (2,5) (3,5) (4,5) (5,5) (6,5) · · ·
(1,6) (2,6) (3,6) (4,6) (5,6) (6,6) · · ·
(1,7) (2,7) (3,7) (4,7) (5,7) (6,7) · · ·

...
...

...
...

...
... . . .

Maybe you can see the issue. It goes to infinity in all
directions. Can we come up with an algorithm to count
up every pair?



A Hint

(1,1) (2,1) (3,1) (4,1) (5,1) (6,1) · · ·
(1,2) (2,2) (3,2) (4,2) (5,2) (6,2) · · ·
(1,3) (2,3) (3,3) (4,3) (5,3) (6,3) · · ·
(1,4) (2,4) (3,4) (4,4) (5,4) (6,4) · · ·
(1,5) (2,5) (3,5) (4,5) (5,5) (6,5) · · ·
(1,6) (2,6) (3,6) (4,6) (5,6) (6,6) · · ·
(1,7) (2,7) (3,7) (4,7) (5,7) (6,7) · · ·

...
...

...
...

...
... . . .

Remember how we had to handle the integers? We need
to reach every number after enough time. We can’t
choose one direction and ’turn around’ at the end.

Also, remember the tip about putting every number in
one long line and the dots only going in one direction.



The Answer

(1,1) (2,1) (3,1) (4,1) (5,1) (6,1) · · ·
(1,2) (2,2) (3,2) (4,2) (5,2) (6,2) · · ·
(1,3) (2,3) (3,3) (4,3) (5,3) (6,3) · · ·
(1,4) (2,4) (3,4) (4,4) (5,4) (6,4) · · ·
(1,5) (2,5) (3,5) (4,5) (5,5) (6,5) · · ·
(1,6) (2,6) (3,6) (4,6) (5,6) (6,6) · · ·
(1,7) (2,7) (3,7) (4,7) (5,7) (6,7) · · ·

...
...

...
...

...
... . . .

When I learned this technique, we called it
diagonalization (this is actually incorrect but for some
reason everyone understood it?), but there’s a better
name to describe this. Dovetailing!

Okay, time to pull out the animation budget.



Dovetailing

Dovetailing is the technique of arranging an infinite
multidimensional grid in a sequence by
counting/iterating each ’diagonal.’

There are a few things to note:

1: Diagonal is loosely defined. For intuition, there’s no
issue but for proofs, we need to rigourously define this.

2: Yes, this works in higher dimensions. I’ll leave that as
a worksheet question.



Proving |N| = |N × N|

Proof. We start by arranging every element in N × N in a
sequence as follows: First, group arbitrary elements of
form (a, b) by a + b. So, (3, 2) is grouped with (4, 1)
and all these will be in group five. Denote this as G5.

Second, we iterate through each group starting at group
two or G2 since 1 + 1 = 2. Note, each group has a finite
number of elements since |Gn| ≤ n = a + b for valid a, b.
Thus, we will reach every group after enough time.



Proving |N| = |N × N|

Proof. Continued.
Our sequence is G2, G3, G4, . . . =
(1, 1),︸ ︷︷ ︸

G2

(1, 2), (2, 1),︸ ︷︷ ︸
G3

(3, 1), (2, 2), (1, 3),︸ ︷︷ ︸
G4

(1, 4), . . ..

Now we’ll show that N maps to this sequence bijectively.

Regarding surjectivity, if (a, b) ∈ N × N, then
(a, b) ∈ Ga+b. Thus, it gets mapped to.

Regarding injectivity, since every element can only be in
one group and we don’t allow duplicate elements in
groups, we must have that each element is only mapped
to once.

Thus, this mapping/function is bijective.



A Quick Note

Here, we didn’t explicitly define f . I know this is
hypocritical, but in this case, it’s hard to come up with
f in a smart way. It’s incredibly diffuclt to devise a rule
for f . Thus, we argued it by other means.

It all comes down to rigor. If we can define f , we
should! But in cases when we can’t define f , we have
no choice but to argue it like the previous proof.



Limits Of Dovetailing

There are a few limits to dovetailing.

Firstly, this won’t work for infinite dimensions, only
finite dimensions. So we can’t use dovetailing to find
|N × N × · · · |.

Secondly, we need to figure out how to arrange our
elements in a grid or by diagonals/groups.



Why Learn Dovetailing?

This technique doesn’t come up often in mathematics.
So why learn it?

I like to believe: Because dovetailing is cool. It’s one of
the most fun and thought provoking things in the first
half.

But in actuality, it probably has to do with ’thinking
outside the box.’ It’s problem solving at its finest.
Knowing how to use techniques like these are what
makes you better at math and problem solving.

Even if you never use this tool, knowing how it works
can never hurt you.



Okay, One More!

What’s |Q|?

And Q is special. Between any two elements, we can
find another element. For example, between 21

5 and 22
5 ,

we can find something in between. For example, 43
10 . We

say that Q is dense.

So, we need to come up with a smart way to list every
element in Q. How would we do so?



Extending Z

Here’s one way we can think of Q.
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Removing Duplicates
But remember, Q has to be in lowest form. So, we’ll
remove duplicates.
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If we go further right or left, we’d have to remove
elements like 3

6 or −3
3 .



For Consideration

In the above picture, the grid extends out in three
directions. Left, right and down. Can we turn this into a
grid that only extends out in two directions?

We can. Act like the negatives don’t exist, and every
time we count a positive value, add in the negative one
for free.



A Second Way To Count Q

We use ’total’ value. For example, 4
3 has a total value of

7. 1
2 has a total value of 3.

Yeah, all we do is add the numerator and denominator.

And this seems awfully similar... Let’s see how this
proof ends up being different than the one for |N| × |N|



Proving |Q| = |N|

Proof. We’ll arrange Q into a sequence as follows. First, we
put every element in a group dependent on the sum of
the absolute value of their numerator and denominator.

For example, a
b will get put into G|a|+|b|. The reason we

need to consider the absolute value is because otherwise
we have negative groups, which gets annoying to deal
with.

Then, we’ll count/iterate through every group as
follows: G1, G2, G3, G4, . . ..



Proving |Q| = |N|

Proof. Continued.
However, we still encounter a problem of duplicates.
When creating Gn, don’t include elements that aren’t in
lowest forms.

For example, 2
2 ̸∈ G4. This will ensure injectivity.

Finally, we note that each Gn is finite as |Gn| < 2n.
Thus, every group is reached by our algorithm.



Proving |Q| = |N|

Proof. Continued.
Our sequence is G1, G2, G3, G4, . . . =
0
1 ,︸︷︷︸
G1

1
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1 ,︸ ︷︷ ︸
G2

1
2 ,

2
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2 , −2
1 ,︸ ︷︷ ︸
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3
1 ,

1
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1 , −1
3 ,︸ ︷︷ ︸

G4

1
4 , . . .

Now we’ll show that N maps to this sequence bijectively.

Regarding surjectivity, if a
b ∈ Q, then a

b ∈ G|a|+|b|.
Thus, it gets mapped to.

Regarding injectivity, since every element can only be in
one group and we don’t allow duplicate elements in
groups, we must have that each element is only mapped
to once.

Thus, this mapping/function is bijective.



There We Have It

We have shown that Q has countable cardinality.
Additionally, you can show that finite cartesian products
of countable sets is still countable.

There’s only two ways to proceed from here.

1: Countable cartesian products. We won’t deal with
this.

2: Cardinality of R. This is what we’ll do next time.


